【研究成果】2013年
研究成果67
Colloidal quantum dot-based plasmon emitters with planar
integration and long-range guiding
Masashi Miyata and Junichi Takahara
8 April 2013 / Vol. 21, No. 7 / OPTICS EXPRESS 7882
We have experimentally demonstrated the design of functional and controllably integrated QD-based plasmon emitters coupled to a thin metal film supporting long-range (∼ 35 μm), lowdispersion and two-dimensional isotropic plasmon guiding. The QD-based plasmon emitters analysed here have high potential for power-efficient emitters, and can also be applied to a wide range of frequencies by selection of QD size and composition. Our concept will be implemented with a plasmon emitter coupled to other planar plasmonic waveguides with same configurations such as metal slab plasmonic waveguides and dielectric-loaded plasmonic waveguides; these waveguides are now one of the best options for plasmonic routing and processing. Furthermore, the emitter can be integrated with other QD-based components, such as modulators and amplifiers with similar dimensions, in one-chip circuits by using our fabrication technique. We believe that the present work will be the basis of these applications and offer further development of a wide range of plasmonics.

